ASIA Hybrid Platform

High Power and High Integration Transfer-mold

Hongguang Huang, Mitsubishi Electric & Electronics (Shanghai) Co., Ltd

Mitsubishi Electric transfer-mold type IPM

Mitsubishi Electric is the pioneer of transfer-mold type IPM!

Features

- Integrated the latest power chip for matching various applications;
- Satisfy both of good performance and reasonable cost;
- Wide current line up with compact package size;
- Accumlated know-how on design and assembly for long period assures high reliability and low failure rate of IPM.

Line-up of Mitsubishi Electric transfer-mold type IPM

Table.1 Line-up of Mitsubishi Electric transfer-mold type IPM

SOPIPM	SLIMDIP	Super Mini DIPIPM	Mini DIPIPM	Large DIPIPM	DIPIPM+	Large DIPIPM+
stational it is the	HIIIIIIIIII	and delated			(CI/CIB)	
2A/600V	5,15A/600V	5~35A/600V	5A~50A/600V 5,10A/1200V	50,75A/600V 5~75A/1200V	50A/600V 5~35A/1200V	(CI/CIB*) 50, 75,100A/1200V
15.2x27.4x3.6[mm]	18.8x32.8x3.6[mm]	38x24x3.5[mm]	52.5x31x5.6[mm]	79x31x8[mm]	85x34x5.7[mm]	114.5x43x7[mm]

<Confidential>

Concept of Large DIPIPM+

Features

- All in one solution: inverter, converter, driver ICs and brake (CIB type) are integrated;
- Adopted Mitsubishi Electric latest 7th gen. IGBT;
- Extended operation temperature: T_{imax}=175°C*, T_c=125°C.

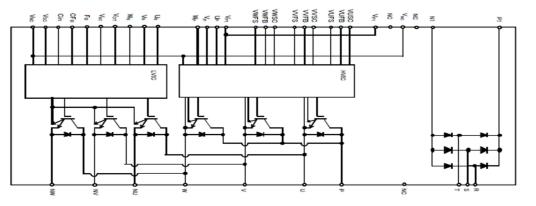


Fig.1 Inner block diagram of Large DIPIPM+ (CI type)

*The maximum allowable junction temperature rating (T_{jmax}) is risen to 175° C which makes it more flexible for larger power system design. For safe operation, it is necessary to limit the average junction temperature (T_{jav}) below 150° C.

2.Features of Large DIPIPM+

Internal structure improvement and Integrated functions

Large DIPIPM+' s internal construction has been improved by new method to connect the control ICs and the IGBTs to optimize the compactness of package as shown in Fig.2.

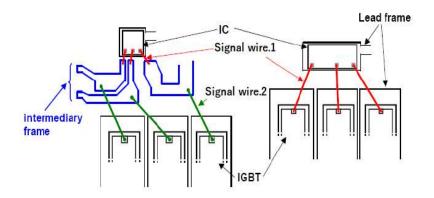


Fig.2 Wire bonding solution for Large DIPIPM (Left) and Large DIPIPM+ (Right) The comparisons of inner circuit and protection functions among existing Large DIPIPM Ver.6, DIPIPM+ and the new Large DIPIPM+ are shown in Table.2.

Table.2 Integrated functions comparison

ltems	Large DIPIPM Ver.6	DIPIPM+	Large DIPIPM+	
Converter	No	Built-in	Built-in	
Inverter	Built-in	Built-in	Built-in	
Brake	No	Built-in/Selectable	Built-in/Selectable ⁽¹⁾	
Control Supply UV protection	Built-in	Built-in	Built-in	
SC protection mode (N-side)	Current sense/Shunt resistor	Shunt resistor	Current sense/Shunt resistor	
Temperature output (V _{oī})	Built-in	Built-in	Built-in	
Fault output (Fo)	Fault output (Fo) Built-in		Built-in	
Bootstrap Di	Built-in	Built-in		
N-side IGBT emitter Open		Open	Open	

Note (1) : Under development

MITSUBISH

Changes for the Better

3.Advantages of Large DIPIPM+

PCB layout optimizing

MITSUBISH

Changes for the Better

The circuit configuration of a driver system based on Large DIPIPM+ is shown in Fig.3, there is a clear separation between the control part and the power related part of the module which optimizes and downsizes the driver system design.

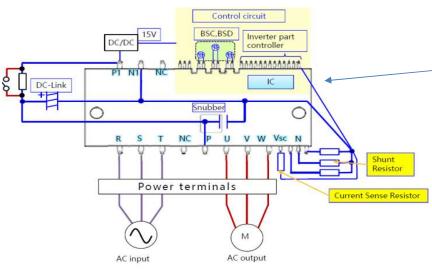


Fig.3 Example of PCB layout (CI type)

- No need use external driver ICs and optocoupler;
- Support bootstrap circuit and reduce isolated control supplies;

- Simplifying PCB layout, reduce the quantity of components and downsizing PCB area.

Chip performance

Large DIPIPM+ adopts the 7th generation IGBT chip of Mitsubishi Electric and its T_{jmax} is risen to 175° C. The static characteristics of IGBT in comparison between Large DIPIPM+ and Large DIPIPM Ver.6 1200V/75A modules is shown in Fig.4.

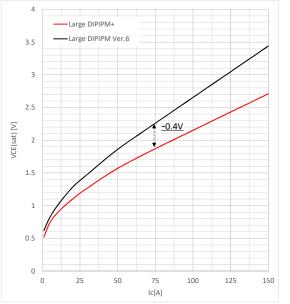


Fig.4 Typical static characteristic comparison (N-side, T_j=125° C, V_D=V_{DB}=15V, I_c=75A and V_{IN}=0 \leftrightarrow 5V.) <Confidential>

The switching waveforms of 1200V/50A Large DIPIPM+ are shown in Fig.5 and the test conditions are V_{cc} =540V, I_o =50A, T_j =150° C and V_D = V_{DB} =15V, there are no oscillations during the turn on and turn off operation process, declining of the tail current is smoothly and duration is shortly.

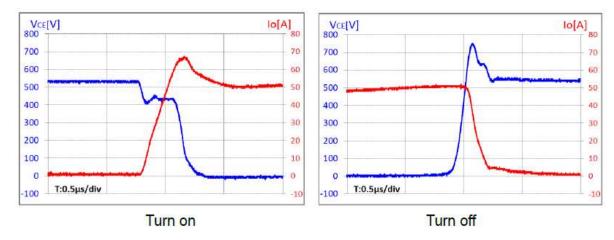


Fig.5 Switching waveforms of Large DIPIPM+ (50A device)

EMI performance

The comparison test on noise level has been done for Large DIPIPM+ and 1200V Large DIPIPM Ver.6 under similar condition from 30MHz to 300MHz frequency spectrum, Large DIPIPM+ has better EMI performance as shown in Fig.6 due to superior switching performance.

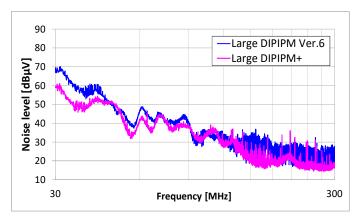


Fig.6. Radiated noise emission comparison

Power loss performance

The power loss comparison result between 75A products of Large DIPIPM Ver.6 and Large DIPIPM+ is shown in Fig.7, Large DIPIPM+ extended the output peak current (I_{opeak}) from 36A to 54A comparing with Large DIPIPM Ver.6 when $\triangle T_{i-c}$ is 25° C.

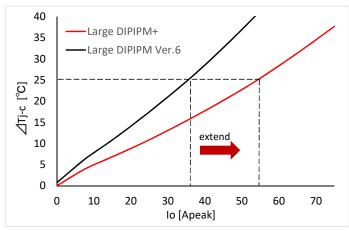


Fig.7 Typical power loss comparison (V_{cc}=600V, f_c =8kHz, f_o =60Hz, P.F=0.8, M=1 and T_j=150° C)

4.Line-up and target application

The Line-up and target application of Large DIPIPM+ series is shown in Table.3.

Table.3 Line-up and target application

Type No. ⁽¹⁾	Rating	Target application	
PSS50NE1CT	50A/1200V		
PSS75NE1CT	75A/1200V	Commercial air conditioner	
PSS100NE1CT	100A/1200V		
PSS50ME1CT ⁽²⁾ 50A/1200V			
PSS75ME1CT ⁽²⁾	75A/1200V	Industrial inverter	
PSS100ME1CT ⁽²⁾	100A/1200V		

Note: (1) N means CI type and M means CIB type; (2) Under development.

Merits for customer

- System cost improvement;
- Easy/simple design and save design time;
- Better noise performance.....

MITSUBISH ELECTRIC Changes for the Better